ELEKTRONIKA ANALOG


Jenis-Jenis Resistor pada saat ini hanya ada 2 jenis, yaitu Fixed Resistor (Resistor Tetap) dan Variable Resistor (Resistor Tidak Tetap). Dari dua jenis resistor tersebut di bagi lagi menjadi beberapa bagian, berikut ini akan kami jelaskan bagian-bagian dari kedua jenis tersebut :
Fixed Resistor (Resistor Tetap) adalah jenis resistor yang nilainya sudah tertulis pada badan resistor dengan menggunakan kode warna ataupun angka. Resistor ini banyak digunakan sebagai penghambat arus listrik secara permanen. Fungsi dari resistor ini adalah sebagai pembatas arus yang mengalir pada lampu LED. Jenis dari fixed resistor adalah :
Resistor Kawat
Description: Resistor Kawat
Resistor Kawat adalah jenis resistor yang baru pertama kali di gunakan pada saat rangkaian elektronika masih menggunakan tabung hampa. Bentuk fisik dari resistor ini bervariasi dan memiliki ukuran yang cukup besar. Karena memiliki resistansi yang tinggi dan tahan terhadap panas yang tinggi, resistor ini hanya dipergunakan dalam rangkaian power. Sampai saat ini, jenis yang masih di pakai adalah jenis yang memiliki lilitan kawat pada bahan keramik, kemudian di lapisi dengan bahan semen.
Resistor Batang Karbon (Arang)
Description: Resistor Batang Karbon (Arang)
Resistor ini terbuat dari bahan karbon kasar yang kemudian di beri lilitan dan tanda dengan kode warna yang berbentuk gelang. Untuk dapat membaca nilai resistansi dari setiap warna gelang tersebut dapat menggunakan tabel kode warna. Jenis resistor ini terbentuk setelah adanya resistor kawat. Saat ini sudah jarang orang yang menggunakan resistor batang karbon di dalam rangkaian-rangkaian elektronik.
Resistor Keramik
Description: Resistor Keramik
Dengan kemajuan teknologi yang semakin pesat, khususnya di bidang elektronik. Pada saat ini telah tercipta jenis resistor yang terbuat dari bahan dasar keramik atau porselin dan dilapisi dengan kaca tipis. Karena memiliki bentuk fisik yang kecil dan juga nilai resistansi yang tinggi, resistor ini paling banyak digunakan dalam rangkaian elektronik. Rating daya yang dimiliki resistor keramik sebesar 1/4 Watt, 1/2 Watt, 1 Watt dan 2 Watt.

Resistor Film Karbon
Description: Resistor Film Karbon
Resistor ini merupakan hasil dari pengembangan resistor batang karbon. Sejalan dengan perkemangan teknologi, telah terbentuklah resistor yang dibuat dari karbon dan dilapisi dengan bahan film yang berfungsi sebagai pelindung terhadap pengaruh luar. Nilai resistansi sudah tercantum dalam bentuk tabel kode warna. Karena memiliki nilai resistansi yang tinggi dan juga bentuk fisiknya kecil, resistor ini juga banyak digunakan di dalam berbagai rangkaian elektronika. Rating daya yang dimiliki resistor ini adalah 1/4 Watt, 1/2 Watt, 1 Watt dan 2 Watt.

Resistor Film Metal
Description: Resistor Film Metal
Bentuk dari resistor film metal hampir sama dengan resistor film karbon. Hanya saja resistor ini tahan terhadap perubahan temperatur dan memiliki tingkat kepresisian yang tinggi karena nilai toleransi yang mencapai 1% atau 5%. Jika di bandingkan dengan jenis Fixed Resistor lainnya, resistor ini memiliki kepresisian yang lebih tinggi karena memilik 5 gelang warna bahkan ada juga yang terdapat 6 gelang warna. Resistor film metal banyak digunakan dalam rangkaian elektronika yang memiliki tingkat ketelitian tinggi, seperti alat ukur.

Variable Resistor (Resistor Tidak Tetap) adalah jenis resistor yang memiliki nilai resistansi berubah-ubah secara langsung dengan cara memutar atupun menggeser tuas yang ada. Jenis dari Variable Resistor adalah :
Potensiometer
Description: Potentiometer
Potensiometer adalah jenis variable resistor yang nilai resistansinya dapat kita rubah dengan cara memutar porosnya melalui tuas yang sudah di sediakan. Pada umumnya, resistor ini terbuat dari kawat atau karbon dan paling banyak digunakan dalam rangkaian elektornika. Saat ini telah banyak potensiometer yang terbuat dari bahan karbon karena memiliki ukuran yang lebih kecil dan resistansi yang cukup besar. Perubahan nilai resistansi terbagi menjadi dua, yaitu linier dan logaritmatik. Untuk mengetahui apakah potensiometer tersebut linier atau logaritmatik dapat dilihat dari huruf yang tertera pada bagian belakang. Apabila tertera huruf “B” maka potensiometer tersebut bersifat logaritmatik, sedangkan jika tertera huruf “A” maka potensiometer tersebut bersifat linier.

Trimpot
Description: Trimpot
Trimpot atau biasa di sebut Tripotensiometer adalah resistor yang nilai resistansinya dapat berubah. Sifat dan karakteristik trimpot tidak jauh berbeda dengan potensiometer, hanya saja bentuk fisik trimpot lebih kecil dibandingkan dengan potensiometer. Perubahan nilai resistansi tersebut juga dibagi menjadi 2, yaitu linier dan logaritmatik. Untuk mengubah nilai resistansi dengan cara memutar lubang tengah pada badan trimpot dengan menggunakan obeng.

NTC dan PTC
Description: NTC dan PTC
NTC (Negative Temperature Coefficient) dan PTC (Positive Temperature Coefficient) merupakan resistor yang nilai resistansinya dapat berubah apabila terjadi perubahan temperatur di sekelilingnya. Nilai resistansi NTC sendiri akan naik apabila temperatur di sekelilingnya turun, Sedangkan nilai resistansi PTC akan naik jika jika temperatur di sekelilingnya naik. Kedua resiston ini paling sering digunakan sebagai sensor karena dapat mengukur suhu atau temperatur daerah di sekelilingnya.

LDR
Description: LDR
LDR (Light Dependent Resistor) merupakan resistor yang nilai resistansinya dapat berubah apabila terjadi perubahan intensitas cahaya di daerah sekelilingnya. Itu dapat terjadi karena intensitas cahaya yang besar dapat mendorong elektron untuk menembus batas-batas pada LDR. Dengan begitu, nilai resistansi akan naik jiga intensitas yang diterima sedikit. Sedangkana nilai resistansi dari LDR akan turun jika intensitas cahaya yang diterima banyak. Resistor LDR sendiri banyak digunakan sebagai sensor cahaya, khususnya pada lampu taman.
Contoh pembacaan nilai kode warna tahanan resistor 4 gelang:
Pada resistor 4 gelang, warna gelang yang pertama dan kedua merupakan angka bilangan pertama dan kedua dari resistor, dan warna gelang yang ketiga merupakan pengkali atau multiplier. Sedangkan gelang terakhir atau ke 4 merupakan nilai toleransi resistor. Untuk membedakan gelang yang pertama dan gelang yang terakhir, dalam sebuah tubuh resistor biasanya gelang terakhir terletak agak jauh dari gelang lainnya.
Description: http://trikueni-desain-sistem.blogspot.com/2014/12/menghitung-nilai-resistor-berdasarkan-gelang.html

Hitung nilai resistor dengan 4 gelang warna diatas:
·                     Gelang ke-1 berwarna coklat = 1 
·                     Gelang ke-2 berwarna jingga/orange = 3 
·                     Gelang ke-3 berwarna biru = 6 atau 106 atau 1 Megaohm 
·                     Gelang ke-4 berwarna emas = ± 5%
Nilai resistor = 13 * 106 dengan toleransi ±5%
Nilai resistor = 13.000.000 ohm = 13 Megaohm dengan toleransi ±5%
Nilai toleransi resistor = 13.000.000 x 5% = 650.000 ohm
Nilai batas maksimum resistor = 13.000.000 + 650.000 = 13.650.000 ohm
Nilai batas minimum resistor = 13.000.000 - 650.000 = 12.350.000 ohm
Resistor dapat dikatakan masih baik apabila memiliki nilai hambatan lebih besar sama dengan 12.350.000 ohm dan lebih kecil sama dengan 13.650.000 ohm (12.350.000 ohm < nilai R < 13.650.000 ohm).

Contoh pembacaan nilai tahanan berdasarkan kode warna resistor 5 gelang:
Description: http://trikueni-desain-sistem.blogspot.com/2014/12/menghitung-nilai-resistor-berdasarkan-gelang.html 
·                     Gelang ke-1 berwarna merah = 2 
·                     Gelang ke-2 berwarna jingga/orange = 3 
·                     Gelang ke-3 berwarna kuning = 4 
·                     Gelang ke-4 berwarna hitam = 0 atau 100 atau 1 ohm 
·                     Gelang ke-5 berwarna perak = ±10%
Nilai resistor = 234 * 100 = 234 ohm dengan toleransi ±10%
Nilai toleransi resistor = 234 ohm x 10% = 23,4 ohm
Nilai batas maksimum resistor = 234 + 23,4 = 257,4 ohm
Nilai batas minimum resistor = 234 – 23,4 = 210,6 ohm
Resistor dapat dikatakan masih baik apabila memiliki nilai hambatan lebih besar sama dengan 210,6 ohm dan lebih kecil sama dengan 257,4 ohm (210,6 ohm < nilai R < 257,4 ohm).




Fungsi Kapasitor dalam komponen elektronika adalah sebagai penyimpan muatan listrik, selain berfungsi sebagai penyimpan listrik, kapasitor juga dapat digunakan sebagai penyaring frekuensi. 
Gambar Jenis-Jenis Kapasitor
Description: Jenis-Jenis Kapasitor

Cara Kerja Transformator mungkin menjadi sebuah pertanyaan yang cukup umum bagi orang awam yang kurang menguasai ilmu di bidang teknologi. Sudah umum untuk diketahui bahwa transformator adalah suatu perantara atau media untuk menyalurkan tenaga listrik dari tegangan rendah ke tegangan yang lebih tinggi bisa juga terjadi sebaliknya dan bekerja berdasarkan prinsip induksi elektromagnet. Transformator diibaratkan sebagai sebuah jantung dalam transisi tegangan listrik. Penggunaan dari transformator pun sudah sering kita rasakan dalam berbagai aktivitas sehari-hari yang kita lakukan. Namun mungkin hanya sebagian diantara kita yang mengerti tentang cara transformator bekerja. Tidakah kalian tahu bahwa dalam sebuah transformator terdapat dua hukum yang bekerja yaitu hukum induksi faraday dan hukum Lorenz dalam menyalurkan daya. Kedua hukum ini bekerja bersamaan dalam sebuah transformator. Lalu bagaimanakah cara kerja transformator?

Cara Kerja Transformator

Description: Cara Kerja Transformator
Secara sederhana cara kerja transformator adalah seperti perputaran tegangan arus bolak balik (AC). Lebih detailnya tentang cara kerja ini adalah ketika lilitan primer dihubungkan dengan tegangan arus bolak balik maka menimbulkan perubahan arus listrik pada lilitan primer yang mempengaruhi medan magnet. Medan magnet yang telah berubah ini semakin diperkuat dengan adanya inti besi dan inti besi tersebut menghantarkannya ke lilitan sekunder. Hal ini akan mengakibatkan timbulnya ggl induksi pada masing-masing ujung lilitan sekunder. Efek dari peristiwa ini dinamakan induktansi timbal balik (mutual inductance). Prinsip kerja ini sama dengan induksi elektromagnetik dimana kesamaan ini adalah terdapat penghubung magnetik diantara sisi primer dan sisi sekunder.
Seperti yang telah diungkapkan pada paragraf pertama bahwa terdapat dua prinsip hukum dalam sebuah cara kerja transformator yaitu hukum induksi faraday dan hukum Lorenz. Dalam hukum induksi faraday menjelaskan bahwa gaya listrik melalui garis lengkung yang tertutup berbanding lurus dengan perubahan persatuan waktu dimana arus induksi dilingkari oleh lengkungan itu. Sedangkan hukum Lorentz menjelaskan bahwasanya arus bolak balik yang beredar mengelilingi inti besi berakibat pada berubahnya inti besi tersebut menjadi magnet. Kemudian apabila magnet tersebut dikelilingi oleh suatu lilitan, maka lilitan tersebut akan mempunyai perbedaan tegangan pada kedua ujung lilitannya. Dari kedua hukum ini dapat disimpulkan bahwa baik hukum induksi faraday maupun hukum Lorenz diterapkan dalam bagaimana transformator bekerja.

1. Macam-Macam Transformator

Apabila tegangan terminal output lebih besar daripada tegangan yang diubah, trafo yang digunakan berfungsi sebagai penaik tegangan. Sebaliknya apabila tegangan terminal output lebih kecil daripada tegangan yang diubah, trafo yang digunakan berfungsi sebagai penurun tegangan. Dengan demikian, transformator (trafo) dibedakan menjadi dua, yaitu trafo step up dan trafo step down.
Trafo step up adalah transformator yang berfungsi untuk menaikkan tegangan AC.
Trafo ini memiliki ciri-ciri:
  • jumlah lilitan primer lebih sedikit daripada jumlah lilitan sekunder,
  • tegangan primer lebih kecil daripada tegangan sekunder,
  • kuat arus primer lebih besar daripada kuat arus sekunder.
Trafo step down adalah transformator yang berfungsi untuk menurunkan tegangan AC.
Trafo ini memiliki ciri-ciri :
  • jumlah lilitan primer lebih banyak daripada jumlah lilitan sekunder,
  • tegangan primer lebih besar daripada tegangan sekunder,
  • kuat arus primer lebih kecil daripada kuat arus sekunder.

2. Transformator Ideal

Besar tegangan dan kuat arus pada trafo bergantung banyaknya lilitan. Besar tegangan sebanding dengan jumlah lilitan. Makin banyak jumlah lilitan tegangan yang dihasilkan makin besar. Hal ini berlaku untuk lilitan primer dan sekunder. Hubungan antara jumlah lilitan primer dan sekunder dengan tegangan primer dan tegangan sekunder dirumuskan
Trafo dikatakan ideal jika tidak ada energi yang hilang menjadi kalor, yaitu ketika jumlah energi yang masuk pada kumparan primer sama dengan jumlah energi yang keluar pada kumparan sekunder. Hubungan antara tegangan, kuat arus dan jumlah lilitan pada kumparan primer dan sekunder dirumuskan :
Description: Transformator

Dengan:
Vp = tegangan primer (tegangan input = Vi ) dengan satuan volt (V)
Vs = tegangan sekunder (tegangan output = Vo) dengan satuan volt (V)
Np = jumlah lilitan primer
Ns = jumlah lilitan sekunder
Ip = kuat arus primer (kuat arus input = Ii) dengan satuan ampere (A)
Is = kuat arus sekunder (kuat arus output = Io) dengan satuan ampere (A)
3. Efisiensi Transformator
Di bagian sebelumnya kamu sudah mempelajari transformator atau trafo yang ideal. Namun, pada kenyataannya trafo tidak pernah ideal. Jika trafo digunakan, selalu timbul energi kalor. Dengan demikian, energi listrik yang masuk pada kumparan primer selalu lebih besar daripada energi yang keluar pada kumparan sekunder. Akibatnya, daya primer lebih besar daripada daya sekunder. Berkurangnya daya dan energi listrik pada sebuah trafo ditentukan oleh besarnya efisiensi trafo. Perbandingan antara daya sekunder dengan daya primer atau hasil bagi antara energi sekunder dengan energi primer yang dinyatakan dengan persen disebut efisiensi trafo. Efisiensi trafo dinyatakan dengan Description: \eta . Besar efisiensi trafo dapat dirumuskan sebagai berikut.
Description: Efisiensi Transformator

Fungsi Dioda dan Cara mengukurnya – Dioda (Diode) adalah Komponen Elektronika Aktif yang terbuat dari bahan semikonduktor dan mempunyai fungsi untuk menghantarkan arus listrik ke satu arah tetapi menghambat arus listrik dari arah sebaliknya. Oleh karena itu, Dioda sering dipergunakan sebagai penyearah dalam Rangkaian Elektronika. Dioda pada umumnya mempunyai 2 Elektroda (terminal) yaitu Anoda (+) dan Katoda (-) dan memiliki prinsip kerja yang berdasarkan teknologi pertemuan p-n semikonduktor yaitu dapat mengalirkan arus dari sisi tipe-p (Anoda) menuju ke sisi tipe-n (Katoda) tetapi tidak dapat mengalirkan arus ke arah sebaliknya.
Fungsi Dioda and Jenis-jenisnya
Berdasarkan Fungsi Dioda, Dioda dapat dibagi menjadi beberapa Jenis, diantaranya adalah :
  • Dioda Penyearah (Dioda Biasa atau Dioda Bridge) yang berfungsi sebagai penyearah arus AC ke arus DC.
  • Dioda Zener yang berfungsi sebagai pengaman rangkaian dan juga sebagai penstabil tegangan.
  • Dioda LED yang berfungsi sebagai lampu Indikator ataupun lampu penerangan
  • Dioda Photo yang berfungsi sebagai sensor cahaya
  • Dioda Schottky yang berfungsi sebagai Pengendali
Simbol Dioda
Gambar dibawah ini menunjukan bahwa Dioda merupakan komponen Elektronika aktif yang terdiri dari 2 tipe bahan yaitu bahan tipe-p dan tipe-n :
Description: Simbol Dioda dan Susunannya
Prinsip Kerja Dioda
Untuk dapat memperjelas prinsip kerja Dioda dalam menghantarkan dan menghambat aliran arus listrik, dibawah ini adalah rangkaian dasar contoh pemasangan dan penggunaan Dioda dalam sebuah rangkaian Elektronika.
Description: Cara Pemasangan Dioda dalam Rangkaian Elektronika
Cara Mengukur Dioda dengan Multimeter
Untuk mengetahui apakah sebuah Dioda dapat bekerja dengan baik sesuai dengan fungsinya, maka diperlukan pengukuran terhadap Dioda tersebut dengan menggunakan Multimeter (AVO Meter).
Cara Mengukur Dioda dengan Multimeter Analog
  1. Aturkan Posisi Saklar pada Posisi OHM (Ω) x1k atau x100
  2. Hubungkan Probe Merah pada Terminal Katoda (tanda gelang)
  3. Hubungkan Probe Hitam pada Terminal Anoda.
  4. Baca hasil Pengukuran di Display Multimeter
  5. Jarum pada Display Multimeter harus bergerak ke kanan
  6. Balikan Probe Merah ke Terminal Anoda dan Probe Hitam pada Terminal Katoda (tanda gelang).
  7. Baca hasil Pengukuran di Display Multimeter
  8. Jarum harus tidak bergerak.
    **Jika Jarum bergerak, maka Dioda tersebut berkemungkinan sudah rusak.





Pengertian LDR (Light Dependent Resistor) dan Cara Mengukurnya – Light Dependent Resistor atau disingkat dengan LDR adalah jenis Resistor yang nilai hambatan atau nilai resistansinya tergantung pada intensitas cahaya yang diterimanya. Nilai Hambatan LDR akan menurun pada saat cahaya terang dan nilai Hambatannya akan menjadi tinggi jika dalam kondisi gelap. Dengan kata lain, fungsi LDR (Light Dependent Resistor) adalah untuk menghantarkan arus listrik jika menerima sejumlah intensitas cahaya (Kondisi Terang) dan menghambat arus listrik dalam kondisi gelap.
Naik turunnya nilai Hambatan akan sebanding dengan jumlah cahaya yang diterimanya. Pada umumnya, Nilai Hambatan LDR akan mencapai 200 Kilo Ohm (kΩ) pada kondisi gelap dan menurun menjadi 500 Ohm (Ω) pada Kondisi Cahaya Terang.
LDR (Light Dependent Resistor) yang merupakan Komponen Elektronika peka cahaya ini sering digunakan atau diaplikasikan dalam Rangkaian Elektronika sebagai sensor pada Lampu Penerang Jalan, Lampu Kamar Tidur, Rangkaian Anti Maling, Shutter Kamera, Alarm dan lain sebagainya.

Bentuk dan Simbol LDR

Description: Bentuk dan Simbol LDR (Light Dependent Resistor)

Sensor Cahaya

In Sensor | No Comments
Sensor cahaya adalah sensor yg membuat kita dapat melakukan pendeteksian cahaya, trus melakukan perubahan terhadapnya jadi sinyal listrik dan dipakai dalam sebuah rangkaian yg memakai cahaya sbg pemicunya. Beberapa komponen yang biasanya digunakan dalam rangkaian sensor cahaya diantaranya Light Dependent Resistor / LDR, Photodiode/ dioda foto, dan Photo Transistor / Foto Transistor. Untuk lebih jelasnya mengenai cara / prinsip kerja nya, mari kita simak penjelasannya berikut.

Sensor Cahaya LDR

Description: sensor cahayaPhotoresistor/ Foto Resistor pd dasarnya merupakan suatu resistor yg memiliki nilai resistensi (dlm ohm) bergantung kpd sedikit-banyaknya cahaya yg jatuh dipermukaan sensor tersebut. Cara kerja LDR adalah pada malam hari karena tidak terkena cahaya menyebabkan resistensinya menjadi bertambah besar, sebaliknya resistensinya menjadi kecil apabila kena cahaya pada siang hari. LDR pada umumnya berkombinasi dgn sejumlah transistor hingga membentuk rangakaian lampu yang otomatis. Sangatlah beruntung bagi kita karena untuk membaca nilai dari resistor cahaya tersebut, tidak diperlukan suatu kode khusus.


Description: sensor cahaya LDR

Sensor Cahaya Photodioda

Description: simbol photodiodaPhotodioda atau bisa juga disebut dioda foto adalah semacam komponen dioda yg berfungsi sebagai pendeteksi cahaya. Sama juga dengan dioda lainnya, komponen jenis ini juga punya P-N, bedanya cuma lebih dibuat untuk lebih sensitif kepada cahaya. Photodioda ini dipengaruhi jenis-jenis cahaya tertentu, misalnya saja adalah sinar x; cahaya matahari; infra merah; bahkan sampai ultra ungu. Fungsi foto dioda ini juga bermacam-macam, contohnya bisa kita gunakan untuk mengukur cahaya suatu digital kamera; sensor pada alat-alat medis; bisa juga untuk menghitung secara otomatis jumlah kendaraan yang lewat di jalan tol.
Description: photodioda

Phototransistor

Description: simbol phototransistorPhototransistor bila diartikan secara sederhana adalah komponen jenis transistor bipolar yg memakai junction / kotak base collector sebagai permukaan agar dapat menerima cahaya, dengan demikian maka komponen ini dapat berfungsi sebagai sensor cahaya. Komponen ini mempunyai kelebihan dalam hal sensitifitas jika dibanding dgn photodioda. Sebabnya karena pada Phototransistor, elektronnya adalah hasil dari foton cahaya dikaki kotak yg peng-injeksiannya kebagian base transistor dan selanjutnya diperkuat pada kolektronya yaitu kaki C. Namun hal ini juga menimbulkan kekurangan, yaitu tanggapan terhadap cahaya menjadi lebih lambat bila dibanding photodioda. Demikian, moga berguna ya sedikit ulasan mengenai sensor cahaya ini.
Description: phototransistor

Komentar

Postingan populer dari blog ini

MAKALAH STAR OFFICE WRITER

APLIKASI KENDALI SISTEM WAKTU NYATA

MAKALAH TENTANG APLIKASI WAZE